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Abstract

An approximate Riemann solver is developed for the governing equations of ideal

magnetohydrodynamics (MHD). The Riemann solver has an eight-wave structure,

where seven of the waves are those used in previous work on upwind schemes for

MHD, and the eighth wave is related to the divergence of the magnetic �eld. The

structure of the eighth wave is not immediately obvious from the governing equations

as they are usually written, but arises from a modi�cation of the equations that is pre-

sented in this paper. The addition of the eighth wave allows multi-dimensional MHD

problems to be solved without the use of staggered grids or a projection scheme, one or

the other of which was necessary in previous work on upwind schemes for MHD. A test

problem made up of a shock tube with rotated initial conditions is solved to show that

the two-dimensional code yields answers consistent with the one-dimensional methods

developed previously.
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1 Introduction

The governing equations of ideal magnetohydrodynamics (MHD) describe the physics of a

conducting uid in which the following assumptions hold:
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where �, V , � and L are, respectively, characteristic density, speed, time and length scales

for the problem, c is the speed of light, and � and � represent the dielectric constant and

conductivity of the uid. These equations, written in conservation-law form, are
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where I is a 3 � 3 identity matrix, � is the density, u is the velocity, p is the pressure, B is

the magnetic �eld, and E is the energy, de�ned as

E =
p

 � 1
+ �

u � u
2

+
B �B
2

: (3)

Solutions of these equations can yield insight into a number of problems governed by uid-

dynamic and electromagnetic e�ects.

Much of the past work in solving these equations has been based on Rusanov and Lax-

Wendro� techniques. Only recently have authors begun to work on upwind schemes for

solving these equations. In particular, Brio and Wu [?], Zachary and Colella [?], and Dai and

Woodward [?] have done some of the early development of Riemann-solver-based schemes

for the MHD equations. Their work has been based not on the system of eight conservation

laws as written in Equation ??, but instead on the closely related system that comes from

assuming Bx = constant and dropping the evolution equation for Bx. This yields a 7 � 7

system. The reason for their use of this modi�ed system arises from the fact that one of the

equations governing the magnetic �eld is

r �B = 0 ; (4)
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Figure 1: Waves in the One-Dimensional MHD Riemann Problem

which, in one dimension, becomes the constraint Bx = constant.

The eigenvalues and eigenvectors of this 7 � 7 system are well known (see, for example,

the book by Je�rey and Taniuti [?]); they correspond to:

� one entropy wave traveling with speed u;

� two Alfv�en waves traveling with speed u� ca where

ca =
Bxp
�

is the Alfv�en speed;

� four magneto-acoustic waves, two \fast" and two \slow", traveling with speed u � cf

and u� cs respectively, where
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An (x; t) diagram of the wave interactions at a cell interface is shown in Figure ??.

Given these seven eigenvalues and corresponding right and left eigenvectors, it is pos-

sible to develop a linear approximate Riemann solver ala Roe [?, ?], or a more nonlinear

approximate Riemann solver [?]. Once some questions as to how to scale the left and right
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eigenvectors of the system are answered (for a very nice description of the problems of scaling

in the MHD eigensystem, and an elegant solution to these problems, see the paper by Roe

and Balsara [?]), a robust solver for one-dimensional unsteady problems in MHD can be

developed.

Building a code capable of solving two- or three-dimensional problems from the one-

dimensional Riemann solver building block is not, unfortunately, as straightforward as in

the case of the Euler equations. In the one-dimensional problem, no evolution equation

is necessary for the component of B normal to a cell interface, because the condition of

Equation ?? implies that BnL = BnR . However, in a two-dimensional problem, this is no

longer true. In two dimensions, the discrete constraint corresponding to Equation ?? is

X
faces

Bn ds = 0 ; (5)

and so a jump in Bn is allowed across a face; it simply must be balanced by the jumps

across the other faces of the cell. Thus, a separate procedure for updating this portion of the

magnetic �eld must be implemented, and must be implemented in such a way as to satisfy

the constraint implied in Equation ??. It should be noted that the r � B constraint is a

headache not just for upwind schemes for MHD, but for solution of MHD problems in more

than one dimension by any method. Typically, one of three approaches is taken to satisfy

this constraint:

� a projection scheme, in which a Poisson equation must be solved to subtract o� the

portion of the magnetic �eld that leads to a non-zero divergence;

� non-collocated variables (e.g. a staggered-grid approach), so that the constraint is met

identically;

� a vector-potential description of the magnetic �eld, so that the constraint is met iden-

tically.

A very di�erent approach is taken in the work presented here. Instead of solving a

seven-wave Riemann problem, with an added procedure to update the remaining B-�eld

component which assures that Equation ?? is satis�ed, an eight-wave Riemann solver, in

which all of the magnetic �eld components are updated, is developed and tested.

2 Derivation of the Eight-Wave Riemann Solver

Given the primitive variables

W = (�; u; v; w;Bx; By; Bz; p) ; (6)
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Equation ?? may be rewritten in quasilinear form as
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where, for example
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The Riemann solver would normally be based on the eigensystem of Ap, but it is evident

that this matrix is singular | the �fth row of the matrix is zero, leading to a zero eigenvalue.

This zero eigenvalue is clearly non-physical | the eigenvalues should appear either singly as

the x�component of the ow speed, u, or in pairs symmetric about u. It also does not bode

well numerically | the mode corresponding to this eigenvalue will be undamped.

The approach taken here is to look for a way in which to modify the governing equations

so as to make Ap non-singular. The criteria that should be met by the modi�ed matrix A0

p

are:

� The eigenvalues and eigenvectors corresponding to the seven waves in the one-dimensional

(Bx = constant) Riemann solver remain unchanged;

� The eigenvalue corresponding to the new eighth wave is equal to u (the only physical

choice for a single eigenvalue);

� The left and right eigenvectors corresponding to the new eight wave \make sense";

� In the case Bx = constant, the eight-wave Riemann problem reduces to the seven-wave

Riemann problem.

With these criteria in mind, it becomes possible to �nd a modi�ed version of Ap, given

some patience and some facility with Maple's symbolic manipulation capabilities. The mod-
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i�ed matrix that meets the above criteria is
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The eigensystem of this matrix is composed of the following eight waves, with their corre-

sponding eigenvalues �, left eigenvectors ~̀ and right eigenvectors ~r:

One Entropy Wave
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Four Magneto-acoustic Waves
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One \Divergence" Wave

�d = u

~̀
d = (0; 0; 0; 0; 1; 0; 0; 0)

~rd = (0; 0; 0; 0; 1; 0; 0; 0)
T
: (13)

It is important to note that the �rst seven waves yield the same eigenvectors and eigen-

values as the seven-wave Riemann problem, with the additional information that none of

them carries a change in Bx (the �fth entry of each right eigenvector is zero), and none of

the wave strengths is proportional to a jump in Bx (the �fth entry of each left eigenvector is

zero). The new eighth wave travels with the x�component of the ow speed (its eigenvalue

is u), and it carries a jump in Bx (the only non-zero entry in the left eigenvector is the entry

corresponding to Bx), and a�ects only the x�component of the magnetic �eld (the only

non-zero entry in the right eigenvector is the entry corresponding to Bx).

It is clear that the eigensystem of this modi�ed matrix has all of the desired properties.

In the case Bx = constant, the strength of the eighth wave is zero, and the model reverts to

that of the seven-wave problem. The new wave simply gives a rational procedure for dealing

with non-zero jumps in Bx across the cell faces, which will in general occur when problems

in two or three dimensions are being solved. The question remains, however, of what the

modi�cation of the matrix Ap (and the corresponding changes to Bp and Cp) has done to

the system of conservation laws.

This can be seen by collecting the source terms due to the modi�cations to Ap, Bp and

Cp and transforming to conserved variables. The new equation set, which has the eight-wave

eigensystem described above, is
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This is a noteworthy result: the source term that must be added to Equation ?? is proportional

to r �B. At the partial di�erential equation level, only terms that are equal to zero have

been added to the conservative form of the governing equations. So, while technically the

equations are no longer in conservative form, the deviations from conservation will be very

small. It is only by writing the equations in this slightly non-conservative form that the

singularity related to r �B can be removed. It has been previously noted that solving the

momentum equation in non-conservative form can remove instabilities related to non-zero
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r �B [?]; the current work hopefully reinforces this earlier result, and sheds further light on

the mechanism for stabilizing the equations, as well as applying the idea in a novel way to

develop a Riemann solver for multi-dimensional MHD.

It is interesting to note another justi�cation of this particular choice of source term.

Rewriting Equation ?? slightly by expanding some of the terms, the following form of the

equations
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is obtained. The terms that are proportional to r�B have been underlined; they are exactly

the same as the source term de�ned above. Thus it can be seen that the addition of the

source term in Equation ?? simply acts to remove the terms proportional to r � B that

appear in Equation ??.

Another interesting note is what the evolution equation for r �B is for the two forms of

the governing equations. This may be seen by taking the divergence of the evolution equation

for the magnetic �eld in Equations ?? and ??. For the original form of the equations, the

evolution equation is

r �
 
@B

@t
+ u � rB+Br � u�B � ru� ur �B

!
= 0

@

@t
(r �B) = 0 : (16)

>From the partial di�erential equation point of view, this might well seem the correct result;

r �B = 0 is an initial condition, and this equation guarantees that r �B = 0 is maintained

throughout the evolution. For the modi�ed form of the equations, the evolution equation

for the magnetic �eld is

r �
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!
= 0

@

@t
(r �B) +r � (ur �B) = 0 : (17)

7



Thus the addition of the source term has modi�ed the evolution equation for r �B so that

the quantity r � B=� is treated as a passive scalar. This is clearly the more numerically

stable of the two evolution equations; any local r �B that is created is convected away.

The above derivation gives all the pieces for building an ideal MHD solver that works

for two-dimensional problems, without having to resort to non-collocated variables or a

projection algorithm. Speci�cally, a Roe-type approximate Riemann solver has been imple-

mented, where the wave strengths and speeds are derived from the above left eigenvectors

and eigenvalues. The eigenvectors are properly normalized to avoid di�culties associated

with coinciding wave speeds [?]. The average state needed at cell interfaces is computed by a

simple average of left and right states (although a Roe average does exist for the ideal MHD

equations [?]). The source term, though small, is calculated in each cell, and added to the

residual. The resulting code is �rst order in space and time.

3 A Test of the Eight-Wave Riemann Solver

Brio and Wu [?] developed a test problem for one-dimensional MHD solvers based on the

shock-tube problem of Sod [?]. Two stationary plasmas are separated by a membrane which

is removed at t = 0, allowing the plasmas to interact. The test problem used here for the

two-dimensional MHD solver is a rotated version of the Brio-Wu problem. The left and

right input states, and the orientation of propagation of disturbances to the grid, is shown

in Figure ??. In the Brio-Wu problem (the top �gure), the boundary conditions are that the

problem is periodic along a line y = constant; in the current test problem (the bottom �gure),

the boundary conditions are that the problem is periodic along a line x+ y = constant.

Both the rotated and non-rotated problems were run on coarse (600 cells in x) and �ne

(1200 cells in x) grids. The time step was taken as �t=�x = 0:2, which corresponds to a

CFL number of approximately 0:8 on the non-rotated problem. The ratio of speci�c heats,

, was 2.0. The number of time steps taken on the coarse and �ne grids were 100 and 200,

respectively. The x�axis in the plotted results from the rotated problem was scaled by a

factor of
p
2, to account for the fact that the CFL number is lower for the rotated problem

than for the non-rotated problem.

Figures ??{?? show comparisons of the results on the �ne grid of the non-rotated shock-

tube problem with the (scaled) results of the rotated shock-tube problem for

3. density (�);

4. pressure (p);

5. velocity component normal to the original discontinuity (un);
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Figure 2: A Test Problem for Two-Dimensional MHD
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Figure 3: Density in the Rotated and Non-Rotated Shock Tubes
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Figure 4: Pressure in the Rotated and Non-Rotated Shock Tubes
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Figure 5: Normal Velocity in the Rotated and Non-Rotated Shock Tubes
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Figure 6: Tangential Velocity in the Rotated and Non-Rotated Shock Tubes
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Figure 7: Tangential Magnetic Field in the Rotated and Non-Rotated Shock Tubes
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Figure 8: Normal Magnetic Field in the Rotated Shock Tube (Coarse and Fine)

6. velocity component tangential to the original discontinuity (ut);

7. magnetic-�eld component tangential to the original discontinuity (Bt).

As can be seen, the agreement is quite good, with the results of the two cases nearly indis-

tinguishable for all but the normal component of velocity. The errors in un are balanced by

errors in the magnetic-�eld component normal to the original discontinuity (Bn). Figure ??

shows Bn for the rotated shock-tube problem on the coarse and �ne grids. In the non-rotated

problem, Bn = 0:75 throughout the tube. As can be seen, there are errors on the order of a

few percent in Bn on the coarse grid, but the errors are reduced as the grid is re�ned.

4 Concluding Remarks

In some respects, this paper presents the development of only one-eighth of a Riemann solver.

Seven of the eight waves of the Riemann solver are the same as those used in previous work on

upwind methods for MHD. The deceptively simple eighth wave that arises from the analysis,

however, is of a di�erent character than the other seven | it arises only in multi-dimensional

problems, and it is crucial for understanding and solving those problems. It plays the very

important role of stabilizing the numerical method with respect to the small amounts of

r �B generated in solving the discrete MHD equations.

Given the meteoric rise of Riemann solvers in the computation of compressible gas dy-

namics, it is not very risky to predict that schemes based on Riemann solvers will play an
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increasingly important role in the computation of compressible conducting ows. The ability

of Riemann solvers to capture strong discontinuities robustly and with minimal dissipation,

the framework that Riemann solvers provide for implementing stable boundary procedures,

and the aesthetically appealing physical basis of Riemann solvers are all strong arguments

for their use. The aim of this paper is to remove what is hopefully one of the last major

obstacles to the use of Riemann solvers in large-scale codes for computing multi-dimensional

conducting ows.
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